Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D13

Direct product G=N×Q with N=C2 and Q=C22×D13
dρLabelID
C23×D13104C2^3xD13208,50


Non-split extensions G=N.Q with N=C2 and Q=C22×D13
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D13) = C2×C4×D13central extension (φ=1)104C2.1(C2^2xD13)208,36
C2.2(C22×D13) = C22×Dic13central extension (φ=1)208C2.2(C2^2xD13)208,43
C2.3(C22×D13) = C2×Dic26central stem extension (φ=1)208C2.3(C2^2xD13)208,35
C2.4(C22×D13) = C2×D52central stem extension (φ=1)104C2.4(C2^2xD13)208,37
C2.5(C22×D13) = D525C2central stem extension (φ=1)1042C2.5(C2^2xD13)208,38
C2.6(C22×D13) = D4×D13central stem extension (φ=1)524+C2.6(C2^2xD13)208,39
C2.7(C22×D13) = D42D13central stem extension (φ=1)1044-C2.7(C2^2xD13)208,40
C2.8(C22×D13) = Q8×D13central stem extension (φ=1)1044-C2.8(C2^2xD13)208,41
C2.9(C22×D13) = D52⋊C2central stem extension (φ=1)1044+C2.9(C2^2xD13)208,42
C2.10(C22×D13) = C2×C13⋊D4central stem extension (φ=1)104C2.10(C2^2xD13)208,44

׿
×
𝔽